nLab Fréchet manifold

Redirected from "Fréchet manifolds".
Contents

Context

Functional analysis

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Manifolds and cobordisms

Contents

Idea

The concept of Fréchet manifold is a special case of that of infinite-dimensional manifold: In analogy to how a finite-dimensional smooth manifold is a manifold modeled on a Cartesian space n\mathbb{R}^n in CartSp, a Fréchet manifold is a manifold modeled on a Fréchet space, such as notably \mathbb{R}^\infty (exmpl.).

The category of Fréchet manifolds is a full subcategory of that of diffeological spaces (prop. below) hence of smooth sets (see here).

Definition

Fréchet manifolds

It is possible to define, analogous to the finite dimensional case, the notion of smooth functions between Fréchet spaces, see at Fréchet space – Differentiable and smooth functions. Therefore, the usual definition of smooth manifold carries over word by word:

Definition

A Fréchet manifold is a Hausdorff topological space with an atlas of coordinate charts taking their value in Fréchet spaces, such that the coordinate transition functions are all smooth functions between Fréchet spaces.

It is possible to generalize some concepts of differential geometry from the finite case to the Fréchet case, one has to be careful, however:

  1. The dual of a Fréchet space that is not a Banach space is never a Fréchet space, therefore one cannot e.g. define both the tangent and the cotangent bundle as Fréchet manifolds. More serious is however

  2. The existence and uniqueness theorems for ordinary differential equations fail in infinite dimensions, so that theorems depending on that from finite dimensional differential geometry cannot be transcribed to the infinite situation in general. It is possible to do this on a case by case basis however.

Tangent Vectors

There are several definitions of tangent vectors that are equivalent in the finite dimensional setting, but may be different in infinite dimensions. Tangent vectors can be defined to be derivations on germs of functions (algebraic definition), or as equivalence classes of smooth curves (kinematic definition). For the time being we settle with the kinematic definition:

Definition

kinematic tangent vector

The kinematic tangent vector space of a Fréchet manifold MM at a point pp consists of all pairs (p,c(0))(p, c'(0)) where cc is a smooth curve

c:Mwithc(0)=p c: \mathbb{R} \to M \; \text{with} \; c(0) = p

As usual, the set of pairs (p,c(0)),pM(p, c'(0)), p \in M forms a Fréchet manifold, the tangent bundle TMTM.

The last sentence makes use of the notion of vector bundle, which can be defined exactly as in the finite dimensional setting:

Vector bundles

Definition

vector bundle

A Fréchet manifold VV is a Fréchet vector bundle over MM with projection π\pi, if for every point pMp \in M there are charts of MM and VV such that VV is mapped locally to UF×GU \subset F \times G for Fréchet spaces F,GF, G, the projection π\pi corresponds to the projection of U×GU \times G to UU, and the vector space structure on each fibre is induced by the vector space structure on GG.

Since, as mentioned before, the dual space of a Fréchet space that is not a Banach space is itself not a Fréchet space, we cannot define the cotangent space canonically as the dual space of the tangent space. Instead we define it directly:

Differential forms

Definition

differential form

A differential form (a one form) α\alpha is a smooth map

α:TM \alpha: T M \to \mathbb{R}

where TMTM is the tangent bundle.

Properties

Relation to diffeological spaces

We discuss how Fréchet manifolds form a full subcategory of that of diffeological spaces.

Definition

Define a functor

ι:FrechetManifoldsDiffeologicalSpaces \iota \;\colon\; FrechetManifolds \longrightarrow DiffeologicalSpaces

from Fréchet manifolds to diffeological spaces (and hence to smooth spaces and smooth stacks) in the evident way by taking for XX a Fréchet manifold for any UU \in CartSp the set of UU-plots of ι(X)\iota(X) to be the set of smooth functions UXU \to X.

Proposition

The functor ι:FrechetManifoldsDiffeologicalSpaces\iota \colon FrechetManifolds \hookrightarrow DiffeologicalSpaces is a full and faithful functor.

This appears as (Losik, theorem 3.1.1).

Proposition

Let X,YSMoothManifoldX, Y \in SMoothManifold with XX a compact manifold.

Then under this embedding, the diffeological mapping space structure C (X,Y) diffC^\infty(X,Y)_{diff} on the mapping space coincides with the Fréchet manifold structure C (X,Y) FrC^\infty(X,Y)_{Fr}:

ι(C (X,Y) Fr)C (X,Y) diff. \iota(C^\infty(X,Y)_{Fr}) \simeq C^\infty(X,Y)_{diff} \,.

This appears as (Waldorf, lemma A.1.7).

Examples

Smooth mapping spaces

Example

For X,YX,Y two smooth manifolds, such that in addition XX is compact, then the mapping space, i.e. the set of smooth functions C (X,Y)C^\infty(X,Y) is naturally a Fréchet manifold. Under the full subcategory inclusion of Fréchet manifolds into diffeological spaces and smooth sets (prop. ) this coincides with the canonical mapping space formed there.

For example smooth loop space (i.e. for X=S 1X = S^1 the circle) are Fréchet manifolds.

For details on this see at manifold structure of mapping spaces.

Projective limits of smooth finite-dimensional manifolds

(see also Dodson-Galanis-Vassiliou 15)

Fréchet manifolds may be thought of as projective limits of Banach manifolds (see the “added remark” at the end of this MO comment)

Example

The infinite product Fréchet space \mathbb{R}^\infty (exmpl.) is of course a Fréchet manifold.

Proposition

As a Fréchet manifold, \mathbb{R}^\infty (example ) should be the projective limit

lim n n \mathbb{R}^\infty \simeq \underset{\longleftarrow}{\lim}_n \mathbb{R}^n

formed in the category of Fréchet manifolds.

Proof

The point that needs checking is that for XX any Fréchet manifold, then a continuous function

f:X f \colon X \longrightarrow \mathbb{R}^\infty

is smooth as soon as all its components

f n:Xf p n f_n \colon X \overset{f}{\longrightarrow} \mathbb{R}^\infty \overset{p_n}{\longrightarrow} \mathbb{R}

are smooth. This is checked for instance in (Saunders 89, lemma 7.1.8).

Conversely:

Proposition

A function

\mathbb{R}^\infty \longrightarrow \mathbb{R}

out of \mathbb{R}^\infty (example ) is differentiable precisely if at each point only a finite number of its partial derivative are non-vanishing.

(Saunders 89, example 7.1.6)

Example

As a global generalization of the pro-finite dimensional Fréchet manifold \mathbb{R}^\infty of example , every infinite jet bundle J E=lim kJ kEJ^\infty E = \underset{\longleftarrow}{\lim}_k J^k E is a Fréchet manifold, modeled on \mathbb{R}^\infty (Saunders 89, chapter 7).

Remark

Beware, that infinite jet bundles are also naturally thought of as pro-manifolds. This differs from the Frechet manifold structure of example :

A morphism of pro-manifolds

f:J E f \colon J^\infty E \longrightarrow \mathbb{R}

is equivalently a function that is “globally of finite order”, in that there exists kk \in \mathbb{N} and an ordinary smooth function f k:J kEf_k \colon J^k E \to \mathbb{R} such that f=f kp kf = f_k \circ p_k.

But by prop. a morphisms of Fréchet manifolds

f:J E f \colon J^\infty E \longrightarrow \mathbb{R}

is only restricted to have finite order of partial derivatives at every point.

This is a weaker condition. In fact it seems to be also weaker than the condition of being “locally of finite order” considered in Takens 79. (The function ff is locally of finite order if for every point in J EJ^\infty E there exists a kk \in \mathbb{N} and an open neighbourhood U kU_k of its image in J kEJ^k E and a smooth function f k U:U kf^U_k \colon U_k \to \mathbb{R} such that restricted to the pre-image of U kU_k in J EJ^\infty E the function ff given by f kp kf_k \circ p_k ).

Hence it makes sense to speak of locally pro-manifolds.

References

Accounts include:

The embedding into diffeological spaces is due to

  • Mark Losik, Fréchet manifolds as diffeologic spaces, Russian Mathematics 36:5 (1992), 36–42. English translation: PDF. Russian original: М. В. Лосик, О многообразиях Фреше как диффеологических пространствах, Изв. вузов. Матем. (Izv. Vyssh. Uchebn. Zaved. Mat.), 1992, issue 5, 36–42, (mathnet:ivm4812)

and reviewed in

The preservation of mapping spaces under this embedding is due to

Fréchet manifold structure on jet bundles is discussed in

  • David Saunders, chapter 7 of The geometry of jet bundles, London Mathematical Society Lecture Note Series 142, Cambridge Univ. Press 1989.

  • C. T. J. Dodson, George Galanis, Efstathios Vassiliou,, p. 109 and section 6.3 of Geometry in a Fréchet Context: A Projective Limit Approach, Cambridge University Press (2015)

Last revised on October 10, 2023 at 14:20:01. See the history of this page for a list of all contributions to it.